Email to a Friend

Posts tagged 'DNA'

RSS Feed

Our Vision & Values Video

By Bioline 3 November 2016



Bioline is a fast paced growing company our goal is to bring new products and innovations around to our customer around the world.

To do this we have Vision that we adhere to as a company, which is "Unravelling DNA to Enable your Discovery" in both research and industrial applications for our customers around the world.

That vision is very important to us because we want to provide you with the best products and the best technology to enable your discovery, your research, to be done at a level of high quality.

To achieve our goals, we follow 5 key Values: Integrity, Team Work, Passion, Courage and Fairness.

Synthetic biology innovation, building BioBricks with Bioline

By Bioline: The PCR Company 11 July 2013 No comments

The 6th International Meeting on Synthetic Biology (hashtag: #SB6Conf), the world’s foremost synthetic biology (SynBio) meeting, is currently running in London, organised by the BioBricks Foundation, a non-profit organization based in Cambridge, Massachusetts.

BioBricks Foundation SB6.0 Co-Chairs include Professor Paul Freemont and Professor Richard Kitney of Imperial College, who will lead a new £10 million innovation and knowledge centre, to be called SynbiCITE, aimed at providing a bridge between academia and industry and announced at the conference by David Willetts, Minister for Universities and Science.

Imperial College is home to the UK Centre for Synthetic Biology and Innovation a £9m investment aimed at propelling the synthetic biology field forward and promoting SynBio start-ups. International collaboration and networking are important aspects of the meeting, along with poster presentations and ‘lightning talks’ from world leaders in the field of SynBio research.

David Willets said:

"Synthetic biology has huge potential for our economy and society in so many areas, from life sciences to agriculture. But to realise this potential we need to ensure researchers and business work together. This new Innovation and Knowledge Centre will help advance scientific knowledge and turn cutting edge research into commercial success."

Professor Richard Kitney, co-academic of SynbiCITE added:

"Synthetic Biology could be the next ‘industrial revolution’ for the UK, where tiny devices manufactured from cells are used by us to improve many facets of our lives. From producing new, more sustainable fuels to developing devices that can monitor or improve our health, the applications in this field are limitless."

The exciting and emerging field of Synthetic Biology research combines the disciplines of engineering and molecular biology to design and build novel, biologically-based parts, devices, and sensors, as well as the re-engineering of existing, natural biological organisms. Synthetic Biology has the potential to deliver important new applications, from detecting the early onset of disease and improving existing industrial processes, food production, green fuels, and developing therapies to fight harmful bacterial infections or cancers.

Much of the future success of synthetic biology is incumbent upon the development of standardized SynBio components that can be combined in predictable and repeatable ways. The precise approach used when fabricating a BioBrick component depends on the fabrication method (PCR or direct synthesis) as well as the type of part being constructed (a standard part or protein coding sequence).

SyntheticBiology.org maintains a nice introduction to Synthetic Biology as well as a useful how-to guide on the subject of constructing novel BioBrick parts for submission to the Registry of Standard Biological Parts.

Bioline makes it easy to harness the power of new generation enzymes to create parts for BioBricks using PCR. We manufacture and supply a range of high-performance PCR and molecular biology cloning tools, enabling researchers to drive their synthetic biology projects forward. Some of our most popular, most frequently used products for leading synthetic biologists presenting at SB6.0 (1, 2) include the High-Fidelity Velocity DNA Polymerase, MyTaq HS DNA Polymerase for Colony-PCR, Competent Cells, Quick-Stick Ligase for TA Cloning, ISOLATE II Plasmid Mini Kits, and our acclaimed range of SensiMix™ and SensiFAST™ Real-Time PCR kits.

If you've been attending the #SB6Conf in London this week, let us know if your poster cites any Bioline reagents and your synthetic biology research work and achievements could be showcased in a forthcoming SynBio article on the Bioline blog. And if you’re one of the IGEMers attending the conference, don’t forget to check out our Gem of an offer for iGEM Teams!

One final note regarding the future of synthetic biology and the synthetic biologists of the future, you can keep up to date with all the latest news from the iGEM SynBio research teams around the world by following the international iGEM Teams Twitter list maintained by us @ThePCRCompany.

Citations

1. Giuraniuc CV, MacPherson M, Saka Y, et al. (2013). Gateway Vectors for Efficient Artificial Gene Assembly In Vitro and Expression in Yeast Saccharomyces cerevisiae. PLoS ONE 8(5): e64419. doi:10.1371/journal.pone.0064419

2. Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, et al. (2013). A Branched Biosynthetic Pathway Is Involved in Production of Roquefortine and Related Compounds in Penicillium chrysogenum. PLoS ONE 8(6): e65328. doi:10.1371/journal.pone.0065328

Bioline Scholar Monthly: March 2012 Roundup - Epigenetics

By Bioline: The PCR Company 11 April 2012 No comments

Focus on Epigenetics

Epigenetics is the study of heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. The term refers to functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence. Examples of such changes are DNA methylation and histone modification, both of which serve to regulate gene expression without altering the underlying DNA sequence.

These changes may remain through cell divisions for the remainder of the cell's life and may also last for multiple generations. However, there is no change in the underlying DNA sequence of the organism; instead, non-genetic factors cause the organism's genes to behave differently.

Just as in genetic changes, epigenetics is known to be involved in diseases such as cancer, silencing control genes. Epigenetics can also be beneficial by helping control gene expression during development and silence viral insertions, preventing them from promoting viral proliferation. Scientists have only just started scratching the surface of epigenomes, trying to make sense of the patterns of epigenetic marks.

Bioline has a number products designed to help in these studies and this edition of Bioline Scholar Monthly focuses on the use of Bioline products in the developing field of epigenetics research.

5-hydroxymethyl-dCTP

Due to their very similar chemical structure, discrimination of the rare hmC against the far more abundant mC is technically challenging and to date no methods for direct sequencing of hmC have been reported. This paper used 5-hydroxymethyl-dCTP to report on a purified recombinant endonuclease, PvuRts1I, which selectively cleaves hmC-containing sequences, showing its potential to interrogate hmC patterns in mammalian genomes.

Szwagierczak, A., et al. Nucl. Acids Res. 39(12): 5149-5156. (2011) - Characterization of PvuRts1I endonuclease as a tool to investigate genomic 5–hydroxymethylcytosine

Model substrates were created using 5-hydroxymethyl-dCTP to show its effects, both at the promoter and in the gene body, on in vitro gene transcription. The results suggest that the presence of 5hmC in a promoter prevents the binding of essential transcription factors or recruits factors that repress transcription.

Robertson, J., et al. Biochem. Biophy. Res. Comm. 411(1): 40–43 (2011) - The presence of 5-hydroxymethylcytosine at the gene promoter and not in the gene body negatively regulates gene expression

Bioline’s dCTP and 5-hydroxymethyl-dCTP were used to help determined hmC levels in various adult tissues and differentiating embryonic stem cells and show a correlation with differential expression of tet genes.

Szwagierczak, A., et al. Nucl. Acids Res. 38(19): e181. (2010) - Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA

SensiFAST™ SYBR Lo-ROX Kit

RT-qPCR was performed using SensiFAST SYBR Lo-ROX on primary cultures and ovarian cell lines for SFRP4 and its key downstream regulators. The results support a role for SFRP4 as a tumor suppressor gene in ovarian cancers via inhibition of the Wnt signaling pathway. This has not only predictive implications but could also facilitate a therapeutic role using epigenetic targets.

Jacob, F., et al. PLoS ONE 7(2):e31885.doi:10.1371/journal.pone.0031885 (2012) - Loss of Secreted Frizzled-Related Protein 4 Correlates with an Aggressive Phenotype and Predicts Poor Outcome in Ovarian Cancer Patients

IMMOLASE™ DNA polymerase

Radical surgery is the de facto treatment for early rectal cancer. Conservative surgery can achieve high rates of cure but the histopathological measures of outcome used to select local treatment lack precision. In this paper five sites were significantly hypermethylated in cancer compared with adjacent tissue and hypermethylation of two or more of these genes was associated with localized disease.

Leong, K. J., et al. Br. J. Surg, 98: 724–734 (2011) - Methylation profiling of rectal cancer identifies novel markers of early-stage disease

The Sry (sex determining region on Y chromosome) gene is a master gene for sex determination. The Sry gene has tissue-dependent and differentially methylated regions. This study found unique non-CpG methylation in the Sry T-DMR. This non-CpG methylation was detected several mouse strains and has been associated with gene expression in the developmental process. The finding shows that non-CpG methylation has unique characteristic and is still conserved in mammals.

Nishino, K., et al. J. Reprod. Develop. 57(5): 586-593 (2011) - Non-CpG Methylation Occurs in the Regulatory Region of the Sry Gene

MangoTaq™ DNA Polymerase

Orchestrated interplay of different epigenetic mechanisms in regulating gene expression throughout development, shedding light on the current hypotheses for the origin and mechanism of imprinting in plant endosperm.

Paterson, S., et al DMD 39(1): 77-82 (2011) - Histone Deacetylase Inhibitors Increase Human Arylamine N-Acetyltransferase-1 (NAT1) Expression in Human Tumor Cells

Over 90% of low risk (LR) neuroblastoma patients survive whereas less than 30% of high risk (HR) patients are long term survivors. Age (children younger than 18 months old) is associated with LR disease. This paper suggests that adaptive immune responses may play an important role in the progression of HR disease whereas innate immune responses may be active in LR patients.

Gowda, M., et al. J. Tran. Med. 9:170 (2011) - Distinct signatures of the immune responses in low risk versus high risk neuroblastoma

TRIsure

Genetic engineering can expand the utility of pigs for modeling human diseases, however the inefficient production of transgenic pigs represents a technological bottleneck. This paper assesses the hyperactive Sleeping Beauty transposon system for transgene integration into the embryonic porcine genome. It demonstrates germ-line transmission, through F1-offspring and insertion into transposon-tagged genomic loci followed by nuclear transfer. This potentially facilitates the development of large animal models for human diseases.

Garrels, W., et al. Genome.PLoS ONE 6(8):e23573 (2011) - Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig

^ Back to Top