Purification of nucleic acids is an essential technique for modern molecular biology. The removal of restriction enzymes, polymerases, dNTPs, primers and chemical inhibitors is an important factor for many downstream applications. As increasingly sensitive techniques are being developed, a higher demand is being placed on the ability to purify high-quality DNA. This application note reports on the performance of the Bioline reagent SureClean Plus, as a novel, column-free method for the purification of both DNA and dsRNA from PCR reactions or any enzymatic applications.

REMOVAL OF PRIMERS FOLLOWING PCR REACTIONS

An important step in cloning PCR products is the removal of unincorporated dNTPs and primers, which are commonly over 25 bases in length, their presence can interfere with downstream applications and can have a detrimental effect on cloning experiments. To determine the cut-off point of fragment size by purification using SureClean Plus (fig. 1), we took a DNA ladder containing a range of sizes from 25 to 500bp, so as to compare SureClean Plus with two column-based purification methods. 30μl of HyperLadder 25bp (Cat. No. BIO-33031) was purified using the manufacturer’s protocols. For each of the methods, DNA was resuspended in 30μl of TE, of which 5μl was loaded on to a 3.5% agarose gel. SureClean Plus efficiently purified DNA over 75bp (fig. 2). In contrast, the column-based method from competitor Q shows that following purification, DNA as small as 25bp was still present. Conversely, the method from competitor X efficiently removes primers, however, it also removes any genuine PCR products of under 200 bases. The data in fig. 2 shows that the level of recovery using competitors Q and X is lower than with SureClean Plus.

RECOVERY vs SIZE

SureClean Plus has been specifically developed to ensure the maximal recovery of nucleic acids after purification. The experiment below demonstrates the recovery efficiency on a wide range of different sizes of DNA. 30μl of HyperLadder 1kb (Cat No. BIO-33025) was purified using SureClean Plus and the column-based methods of Competitors Q and X. For each of the methods, DNA was resuspended in 30μl TE, 5μl was loaded on a 1% agarose gel (fig. 3). These results clearly demonstrate the effectiveness of DNA recovery using SureClean Plus as compared with column-based purification methods.
RECOVERY vs CONCENTRATION

In order to compare recovery rates with different DNA concentrations, solutions containing increasing amounts of DNA were purified using SureClean Plus and Competitor Q’s spin-column purification (fig. 4). Unlike most column-based methods, SureClean Plus maximizes recovery with nucleic acid solutions of low, medium or high concentrations.

PURIFICATION OF dsRNA

In order to assess recovery of dsRNA, a 500bp fragment of dsRNA was synthesized using T7 RNA Transcription. This technique utilizes the synthesis of two single-stranded complimentary RNA fragments, which are annealed to each other by heating to 65°C for 5 minutes and cooling slowly. Following the annealing step, the double-stranded fragment was purified using SureClean Plus in accordance with the standard purification protocol. The purified dsRNA was subsequently resuspended in DEPC-treated water (Cat No. BIO-38030), and analyzed on a 3.5% agarose (RNase-free) gel (fig. 5). This experiment demonstrates that SureClean Plus-purified the dsRNA with a good recovery rate.

REMOVAL OF RESTRICTION ENODUNUCLEASES

Restriction enzyme digestion is a common method requiring downstream purification of DNA and the removal of enzyme. In order to test this, a fragment of the β-actin gene was amplified from human genomic DNA and then digested using PstI enzyme (the β-actin fragment contained no PstI sites). After a 2-hour incubation at 37°C, the gene was purified with SureClean Plus and with Competitor Q’s column-based purification method. The purified fragment was then resuspended, following which λ DNA and PstI buffer were added. Following a 2-hour incubation period at 37°C, no apparent digestion of the λ DNA was observed (fig. 6), so confirming the complete removal of the PstI restriction enzyme.

Figure 4. Recovery vs concentration. DNA purification using SureClean Plus and Competitor’s Q spin-column purification method.

- SureClean Plus
- Spin-column

- % DNA recovered

- DNA (ng)

- 100 500 1000 2500

- 0 20 40 60 80 100

Figure 5. dsRNA recovery. A 500bp dsRNA fragment was synthesized using the T7 RNA Transcription kit, and then purified using SureClean Plus.

Lane 1. HyperLadder 25bp
Lane 2. Unpurified dsRNA
Lane 3. dsRNA purified using SureClean Plus

Figure 6. Enzyme Removal. An experiment was performed to remove the restriction endonucleases PstI from a restriction digest and then demonstrate the absence of the enzyme in downstream applications.

Lane 1. HyperLadder 1kb
Lane 2. β-actin PCR fragment
Lane 3. β-actin PCR fragment plus PstI and PstI buffer
Lane 4. 20ng λ DNA
Lane 5. 20ng λ DNA plus PstI and PstI buffer
Lane 6. β-actin PCR fragment plus PstI and PstI buffer, purified using SureClean Plus, λ DNA and PstI buffer were then added and incubated for 2 hours
Lane 7. β-actin PCR fragment plus PstI and PstI buffer, purified using Competitor Q’s column based purification method, λ DNA and PstI buffer were then added and incubated for 2 hours
Lane 8. HyperLadder 1kb
DOWNSTREAM APPLICATIONS

A. SEQUENCING

PCR products are used for numerous downstream applications, including sequencing. The length of read of a sequencing reaction depends on the purity of the DNA sample. In the following experiment, a 2Kb fragment was amplified by PCR and subsequently purified using SureClean Plus and Competitor U’s single-tube purification method. The sequencing results obtained (fig. 7) indicate that SureClean Plus efficiently increased the length of read of the purified PCR product.

B. CLONING

The ability of SureClean Plus to enhance successful cloning was assessed. Three different-sized amplicons of 500bp, 1Kb and 2Kb DNA, were amplified using PCR from DNA. Following digestion of the PCR products with the restriction enzymes EcoRI and HindIII, the reaction was split into two halves. One half was further purified using SureClean Plus, whilst the other was left untreated. Each of the three amplicons was subsequently ligated into an EcoRI/HindIII plasmid vector (3:1 insert:vector ratio), using Quick-Stick Ligase (Cat No. BIO-27028). The ligation reaction was then directly cloned into α-Select Gold-Efficiency Competent Cells (Cat No. BIO-85027). The data shown (fig. 8) demonstrate the suitability of SureClean Plus as an important extra step in cloning the ligated PCR products.

C. TRANSFECTION

A vector containing GFP was prepared with and without SureClean Plus as a final clean-up step after plasmid preparation. 3μg of the GFP vector was transiently transfected into CHOK1 cells and incubated for 24 hrs. Transfection efficiency was determined by flow cytometry on an Agilent 2100 Bioanalyzer. The data obtained (fig. 9) illustrate an increased transfection efficiency of the vector, following further purification of DNA using SureClean Plus.
SUMMARY

Many of today’s commercially available methods for purification of DNA rely on chaotropic salts and expensive spin-columns. These can lead to low recovery rates, DNA duplex denaturation and excessive cost for the researcher. In contrast, SureClean Plus provides column-free purification without organic solvents, resulting in high quality and purity of both DNA and dsRNA with negligible loss of product.

In addition, SureClean Plus is a universal purification system, efficiently removing primers/primer-dimers, restriction enzymes, unincorporated nucleotides and inhibitors of downstream applications, and conversely exhibiting almost no loss of product (recovery rates of up to 98%). SureClean Plus enables the researcher to resuspend the purified nucleic acid in any buffer and volume of choice, thus permitting the purification process to be tailored specifically to suit the experiment.

SureClean Plus enables standard 50μl reactions to be purified in a single tube at approximately one-third of the cost of competitors’ spin-columns. When smaller reaction volumes are used, savings are even higher. For applications in which visual recognition of the DNA pellet is desired, SureClean Plus is supplied with a pink co-precipitant.

Please visit www.bioline.com to request a sample of SureClean Plus.